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Abstract 

The pharmaceutical industry faces a growing imperative to rethink drug development models amid 

rising costs, prolonged timelines, and persistently low success rates. Traditional approaches, 

heavily reliant on animal testing and siloed trial-and-error methods, are no longer sustainable, 

either financially or ethically. The average cost of bringing a single drug to market now exceeds 

$2 billion and can take over a decade, with failure rates near 90%. In this context, capital-efficient 

innovation is not merely advantageous, it is essential. GATC Health Corp is at the forefront of this 

paradigm shift, leveraging artificial intelligence (AI) to transform the drug development process 

from discovery through clinical trial design. By integrating multi-omics data, predictive modeling, 

and in silico simulations, GATC Health's AI-powered platform dramatically reduces early-stage 

costs and timelines. For example, target identification that typically costs up to $100 million and 

takes years can now be achieved in weeks at a fraction of the cost. Similarly, AI-driven preclinical 

assessments cut animal use, increase human relevance, and reduce expenses by up to 90%. This 

streamlined process shortens time to Investigational New Drug (IND) filing from over a decade to 

under two years. Beyond cost savings, GATC Health’s approach increases predictive accuracy, 

improves safety profiling, and enhances the probability of clinical success. As regulatory agencies 

embrace AI and New Approach Methodologies (NAMs), GATC Health Corp is uniquely 

positioned to lead the industry toward a smarter, faster, and more ethical model of drug 

development, paving the way for timely, affordable therapies in precision medicine. 
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Introduction 

The drug development process is complex and involves multiple phases. Early stages include the 

identification of biological targets, discovering potential drug candidates, conducting preclinical 

research, each of which is met with high cost.  The subsequent progression through clinical trials, 

requiring securing regulatory approval, and continuing through monitoring the post-market safety 

and effectiveness drastically increases the time and cost1. While the significant hurdles at each 

phase are largely characterized by extremely high costs, lengthy timelines, and a low rate of 

success, there are numerous additional challenges along the way as well, including ethical 

considerations, endpoint selection and optimization of preclinical and clinical trial design to meet 

safety and efficacy benchmarks. Although the actual cost is highly variable based on the drug and 

intended treatment areas it is estimated that the early stages, target identification typically costs 

between $50 million to $100 million using conventional methods2. During the preclinical phase, 

where animal testing is most prevalent, requisite costs including (but not limited to) multiple 

species models, housing, pharmacokinetic (PK) and pharmacodynamic (PD) costs can range from 

$100 million to $200 million. Despite advances in biomedical science, many promising therapies 

falter due to poor target selection, inadequate preclinical models, or suboptimal trial design. To 

overcome these challenges, integrating artificial intelligence (AI) across the drug development 

lifecycle offers a transformative opportunity3,4. AI enables the analysis of vast, complex datasets 

to identify novel targets, simulate compound behavior, predict clinical outcomes, and personalize 

treatment strategies5. By embedding AI from early discovery through clinical development and 

regulatory submission, the industry can reduce time and cost, improve precision, and shift toward 

more human-relevant, ethical approaches, ushering in a new era of smarter, faster, and more 

effective therapeutic innovation5-7.  

Capital efficiency, defined as achieving greater output (e.g., validated targets, successful INDs, or 

approved drugs) per dollar invested, is increasingly critical in the biopharma landscape, where the 

high cost and risk of drug development threaten both innovation and access6. The average cost, 

untenable timeline, and low clinical success rate1,8 collectively highlight a growing concern that: 

only the largest pharmaceutical companies or heavily capitalized biotech firms can afford to sustain 

traditional research and development (R&D) pipelines. This dynamic has created significant 

barriers for emerging innovators, particularly those focused on rare diseases or niche therapeutic 

areas where returns may be more uncertain. In this climate, capital efficiency has become a 

strategic imperative rather than financial optimization. Capital-efficient strategies allow for earlier 

go/no-go decisions, reduced attrition, and smarter allocation of resources across portfolios. This is 

especially vital in the context of venture-backed biotech startups and public-sector collaborations, 

where funding is finite, and investor expectations are high. Technological advances, including 

artificial intelligence (AI) and machine learning (ML), offer a powerful means of achieving this 

efficiency by accelerating discovery, improving target validation, and optimizing clinical trial 

design, thereby reducing both costs and time-to-market4-6. As such, capital efficiency is not only 

reshaping how drugs are developed but also determining which companies will lead in the next 

era of precision medicine. 
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Identifying and validating the right therapeutic targets remains one of the most critical and complex 

steps in drug development. Traditional approaches, often limited by fragmented datasets and labor-

intensive methodologies, struggle to capture the full biological context of disease9,10. The 

integration of AI into target discovery offers a powerful solution by enabling comprehensive 

analysis of genomic, transcriptomic, and multi-omic data. AI can uncover hidden patterns and 

causal relationships within these large, multidimensional datasets, revealing novel, high-

confidence targets with greater biological relevance11. This data-driven approach not only 

improves the precision and speed of target identification but also enhances validation by linking 

molecular signatures directly to disease mechanisms, paving the way for more effective and 

personalized therapeutic strategies4,6,9,10. 

Despite the drastically increased potential to reduce early-stage discovery costs by narrowing 

viable candidate lists before expensive testing, significant challenges persist.  Most importantly, 

AI models are only as good as the training data12. Incomplete, biased, or non-standardized 

biomedical datasets limit predictive accuracy13. Modeling multi-scale biological systems remains 

difficult14. As such, although enhanced data integration alleviates this to some extent, AI struggles 

with emergent properties like pathway crosstalk and immune system dynamics. Further, even with 

rapid in silico success, many AI-derived candidates require substantial empirical validation, 

delaying progression to the clinic as historically, regulatory agencies have lacked standardized 

frameworks for evaluating AI-generated candidates, especially those created through unsupervised 

or black-box algorithms15. The recent FDA shifts are poised to address this challenge.  

Notwithstanding, lack of model transparency, grounded in proprietary and IP concerns reduces 

trust among researchers and clinicians, especially for high-stakes therapeutic areas. The reshaping 

of drug discovery offers tools that accelerate and enhance each stage of the development pipeline 

serve as catalysts in the validation of AI platforms. Key AI-driven platforms that have forged the 

path are presented in Table 1. For example, BenevolentAI strategically integrated novel language 

processing (NLP) and knowledge graphs to mine biomedical literature and omics data for target 

identification of baricitinib as a repurposing candidate for COVID-19, later validated and 

authorized for emergency use by the FDA16. The pipeline continues towards advancing multiple 

programs in neurodegeneration and inflammation. Exscientia, using deep learning for drug design 

and patient stratification, developed the first AI-designed drug (DSP-1181) that entered human 

clinical trials for obsessive compulsive disorder (OCD) in collaboration with Sumitomo Dainippon 

Pharma17. Exscientia currently has over 25 AI-designed molecules in preclinical/clinical 

development in their pipeline. Insilico Medicine leveraged generative adversarial networks 

(GANs) and reinforcement learning for target discovery and molecule generation to develop an 

AI-discovered drug candidate for idiopathic pulmonary fibrosis (INS018_055) entered Phase I 

trials within 18 months18.  
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Table 1. Examples of key platforms driving AI drug development (not an exhaustive list) 

Platform Core Technology Notable Successes Key Challenges 

Exscientia Deep learning for drug 

design and patient 

stratification 

DSP-1181: First AI-

designed molecule to 

enter human trials for 

OCD 

Scaling models for 

diverse diseases; 

maintaining accuracy in 

human-relevant settings 

Insilico 

Medicine 

GANs and 

reinforcement learning 

for target discovery 

and molecule 

generation 

INS018_055: AI-

designed IPF drug 

entered Phase I trials 

within 18 months 

Data bias; biological 

complexity of pathway 

modeling 

BenevolentAI NLP and knowledge 

graphs for biomedical 

literature and omics 

mining 

Identified baricitinib as 

COVID-19 treatment; 

FDA Emergency Use 

Authorization 

Interpretability; limited 

integration of 

heterogeneous data 

sources 

Atomwise CNN-based structure 

prediction for small 

molecule–protein 

binding 

AI-discovered inhibitors 

across multiple targets; 

strong academic/industry 

partnerships 

Generalization across 

protein families; wet-

lab validation lag 

Recursion High-throughput 

phenotypic screening + 

deep learning + 

computer vision 

Broad rare 

disease/oncology 

pipeline; IPO in 2021 

Translating phenotypic 

data to clinical 

outcomes; data scale 

management 

Abbreviations: CNN- convolutional neural networks; GAN-generative adversarial networks; NLP-novel language 

processing; OCD-obsessive compulsive disorder 

Beyond the challenges presented in Table 1, optimization of trial design represents a tremendous 

hurdle. Optimizing clinical trial design is a pivotal challenge in drug development, as traditional 

methods often rely on assumptions, limited data, and trial-specific protocols that may not fully 

account for patient variability or real-world complexities. ML offers transformative potential in 

this area by leveraging large-scale patient data to design more efficient and adaptive clinical trials. 

By utilizing algorithms to analyze historical trial data, demographic information, genetic profiles, 

and clinical outcomes, ML can identify optimal patient stratification, predict trial success, and 

recommend the most effective dosing regimens. Additionally, ML can help in the design of 

adaptive trial models that dynamically adjust based on interim results, thus reducing the need for 

large, rigidly structured trials and allowing for faster decision-making. A key advantage is its 

ability to personalize trial designs, accounting for diverse patient populations and individual 

responses, which can improve both efficacy and safety data. For example, ML has been used to 

enhance patient selection for oncology trials, improving recruitment by predicting which patients 

are most likely to respond to specific therapies19-21. Furthermore, ML tools can identify biomarkers 
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for patient monitoring and assess off-target effects, facilitating earlier detection of safety concerns. 

This data-driven approach can significantly shorten timelines, reduce costs, and increase the 

probability of clinical trial success making machine learning an essential tool for modern clinical 

trial optimization. AI highly depends on legacy data which creates gaps for novel compounds, 

while regulatory frameworks struggle to keep pace with technological advances. Notwithstanding, 

the emerging AI approaches are not without challenges. This paper examines how AI is not just 

optimizing drug development but fundamentally redefining its ethical and scientific foundations, 

creating safer medicines through human-relevant models while sparing millions of animals 

annually. In this context we will describe here how GATC’s Multiomic Advanced TechnologyTM 

provides solutions in the context of other technical breakthroughs, regulatory milestones, and 

persistent barriers to this urgent transition toward compassionate, computationally powered 

pharmacoscience. 

 

Solution-based Efforts are Highly Warranted 

Capital Efficiency in Pharmaceutical Development through Multiomic Advanced Technology 

Developed by GATC Health Corp 

GATC Health Corp. is a technology company that is transforming drug discovery and development 

through its AI-driven platform and approach. The company’s validated and proprietary Multiomics 

Advanced Technology™ (MAT) simulates human biochemistry’s billions of interactions to rapidly 

create novel therapeutics, identify and confirm targets, accelerate development, and de-risk drug 

pipelines by predicting efficacy, safety, and off-target effects. Founded in 2020, GATC Health is 

headquartered in Irvine, CA, and has facilities in Utah, West Virginia, and Washington DC. GATC 

Health's Multiomics Advanced Technology (MAT) platform was built on advanced artificial 

intelligence (AI) technologies. The MAT platform provides the capacity to accurately simulate 

systems biology to expedite drug development and optimize treatments.  The MAT platform 

models disease states, identifies, and validates targets, creates novel chemical entities (NCEs) in 

silico, and predicts safety, efficacy and off-target outcomes with >85% precision. MAT can analyze 

400 trillion data points (2,500 whole exomes) in less than eight minutes without the use of 

supercomputing technologies. 

GATC Health Corp is revolutionizing early-stage drug discovery through its AI-enabled de novo 

platform, which dramatically accelerates R&D timelines from years to months. The company 

begins by identifying diagnostic, prognostic, and monitoring biomarkers from large, biologically 

rich datasets. Advanced mathematical models then assess causal relationships between these 

biomarkers and disease pathology, pinpointing validated therapeutic targets. GATC Health’s 

proprietary AI further simulates and generates libraries of novel, biologically relevant compounds. 

This in silico approach predicts pharmacodynamics, toxicity, and off-target effects early in the 

process, thereby reducing the need for animal testing and lowering costs while enhancing the 

likelihood of clinical success. By mimicking human biology and streamlining early R&D, GATC 

Health sets a new standard for efficient and ethical therapeutic innovation. 
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In addition to discovery, GATC Health applies its AI platform to analyze failed or discontinued 

drug programs, extracting mechanistic insights from historical clinical trial data. This allows the 

company to identify root causes of failure, such as poor patient stratification or incorrect dosing, 

without reverting to additional animal studies. GATC Health helps its partners strategically 

repurpose assets for new indications or patient subgroups, extending IP value while minimizing 

redundant preclinical work. This approach de-risks drug pipelines, supports smarter investment 

decisions, and accelerates development. GATC Health’s platform was validated in an extensive 

retrospective challenge conducted by the University of California, Irvine’s Department of 

Pharmaceutical Sciences to achieve 86% sensitivity and 91% specificity, offering a data-driven 

pathway to maximize the return on prior R&D investments. This proven capability was a major 

factor in the decision by Lloyd’s of London’s syndicate Medical & Commercial International to 

partner with GATC Health as the exclusive provider of AI for their clinical trial outcome insurance 

product. 

GATC Health’s AI-driven prognostic and predictive tools further advance personalized medicine 

by incorporating genomic and multi-omics data to build digital patient models. These simulations 

accurately represent human disease progression and provide actionable health insights at both the 

individual and population levels. Such tools enable precision targeting therapies without the need 

for exploratory animal models. Personalized risk assessments help clinicians intervene earlier and 

more effectively, while mechanistically grounded data supports regulatory engagement. This 

integration of AI across discovery, development, and clinical validation reflects a comprehensive, 

human-centric alternative to traditional methods, delivering ethical and efficient solutions for 

modern drug development. 

 

Capital Efficiency Through the Reduction of Animal Models 

For much of the 20th century, animal models were the cornerstone of preclinical drug development, 

providing critical insights into disease mechanisms and drug safety22,23. However, animal testing 

faced growing scrutiny due to ethical concerns, costs, and its limited ability to predict human 

responses accurately24,25. By the late 1970s and early 1980s, the scientific community began 

exploring alternatives, setting the stage for a paradigm shift in preclinical testing. The late 1970s 

and the 1980s marked the emergence of molecular in vitro testing-methods that use isolated cells, 

tissues, or biomolecules outside their natural biological context26. These techniques leveraged 

advances in molecular biology, immunology, cell culture, and biochemistry to study drug effects 

at the cellular and molecular levels. This period saw the development of assays to assess toxicity, 

efficacy, and mechanism of action without relying on whole-animal models. 

Although preclinical modeling is a critical step in drug development, traditional methods, i.e., 

animal testing, often face limitations in predicting human responses, leading to high failure rates 

in clinical trials. Thus, the pharmaceutical industry stands at a transformative crossroads, where 

advanced AI is reshaping one of its most entrenched practices: animal testing27. The historical 

reliance on animal models to assess safety and efficacy, despite well-documented limitations in 

predicting human outcomes and growing ethical concerns, have paved the way to the 

contemporary need for a paradigm shift28. AI-driven innovations, encompassing predictive 
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toxicology models as well as synthetic biological simulations  are not merely refining this change 

in perspective and perception of drug development, but actively dismantling it, offering a future 

where animal use becomes the exception rather than the rule29. 

Integrating AI into preclinical modeling can significantly improve the accuracy and efficiency of 

simulations such as ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) and 

PK/PD (Pharmacokinetics/Pharmacodynamics). AI-powered simulations can process vast datasets 

to predict how a drug behaves in the body, its potential toxicity, and its efficacy, offering more 

reliable forecasts of clinical outcomes. This not only reduces reliance on animal testing but also 

accelerates the identification of promising drug candidates, optimizes dosing regimens, and 

improves the overall success rate in clinical trials, ultimately lowering costs and development 

timelines while enhancing the probability of success in human patients6,14. 

 

Comparative Cost Analysis: Traditional vs. AI-Based Development 

The contemporary paradigm shift is driven by converging forces:  various sources report that 88 – 

92% of drugs that pass animal trials, even under the most stringent conditions30 fail in human 

clinical trials, exposing both serious scientific limitations and ethical dilemmas. Traditional 

approaches consume 12 years and $2.4 billion per approved drug31, with animal studies 

contributing significantly to these costs and timelines.  

 

Figure 1: Reduction of animal use worldwide caused by the introduction of molecular tests in 

pharmaceutical development32 (figure adapted from 33). 

The emergence of new screening and testing technologies influenced the number of animals used 

in drug development (Figure 1). In the late 1970s, new in-vitro-screening technologies were 
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established that dramatically reduced the number of animals used worldwide. New AI-based 

technologies for drug safety evaluation have the potential to lead yet to another paradigm shift by 

significantly lowering the need for animal-based efficacy and safety studies. 

Previous Significant Reduction in Animal Use: Evidence and Mechanisms 

The introduction and adoption of in vitro assays led to a significant reduction in animal use. In 

vitro assays have provided rapid, high-throughput screening of large compound libraries, enabling 

researchers to eliminate ineffective or toxic candidates before progressing to animal studies. 

Molecular assays provided detailed mechanistic insights, allowing for more targeted and 

hypothesis-driven animal studies, thus reducing the number of animals needed per compound.  

Over time, regulatory agencies began to recognize and accept in vitro data for certain safety and 

efficacy endpoints, further incentivizing their use. 

Generative AI systems now synthesize virtual toxicology datasets, while companies have begun to 

employ "digital twins" of biological systems to test thousands of drug candidates in silico – 

achieving results 1,000x faster than conventional methods.  

The FDA’s 2025 roadmap to phase out animal testing for monoclonal antibodies signals regulatory 

endorsement of these technologies, creating a blueprint for broader adoption across therapeutic 

areas. A recent Request for ‘Comments from Industry’ from FDA34 regarding approaches to 

integrate AI technologies in pharmaceutical development processes underscores the Agency’s 

commitment to reduction in development timelines, expenditures, even costs incurred during the 

review process, and, importantly, the reduction of animals used.  

Emerging AI approaches demonstrate unprecedented precision from predicting protein structures 

with atomic accuracy35, to forecasts drug-target interactions while reducing animal experiments 

by 70% per drug candidate36. These tools align with the "3Rs" principles (Replacement, Reduction, 

Refinement), as seen in Europe’s VICTR3 project, which aims to cut animal use by 25% through 

AI-analyzed historical data and synthetic virtual animals37.  

 

The Impact of Molecular in vitro Testing on Animal Use in Preclinical Development 

The advent and continuous refinement of molecular and cellular assay configurations has led to an 

approximately 50% reduction of animals used in research and drug development between 1980 

and 2000 (see Figure 1 and 38). However, current animal use in research and pharmaceutical 

development still reaches millions of animals per year. In addition, while the application of in vitro 

technologies has certainly refined understanding of a compound’s mechanism of action, enabled 

high throughput screening and drug target verification, such technologies had no effect on 

decreasing the failure rate of drug candidates in clinical development, which remained and is 

consistently high at 88 – 92% over decades. Therefore, another paradigm shift in technologies 

applicable to basic and pharmaceutical development research is needed to significantly reduce this 

failure rate, reduce development costs and further reduce the number of animals in these efforts. 

Such technologies will have to be robust enough to provide actionable data and to convince 

regulatory authorities worldwide of abilities to accurately predict behavior of NCEs in humans. 
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Such technologies have appeared based on AI applications and are currently being applied and 

validated worldwide. 

Studies from small and medium-sized pharmaceutical companies document up to a five-fold 

reduction in the number of experimental animals used per compound synthesized following the 

introduction of in vitro assays39-41. This trend was echoed across the pharmaceutical industry, with 

in vitro and in silico methods increasingly replacing animal models in early-stage drug discovery 

and safety testing16,42,43. 

 

Recent Data on Animal use in Basic Research and Pharmaceutical Development 

The most recent publicly available data on animals used in U.S. research come primarily from 

2021. The U.S. Department of Agriculture (USDA) reports 44 only cover certain species (dogs, 

cats, nonhuman primates, guinea pigs, hamsters, rabbits, etc.) and exclude mice, rats, birds, and 

fish, which make up the vast majority of animals used in research. Estimates from advocacy and 

research organizations supplement the figures below (Figure 2 and 3). 

 

Figure 2. Potential economic impact, of replacing traditional animal tests with in silico 

equivalents, due to cost and time savings. 
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Figure 3. Potential impact on healthy life of replacing traditional animal tests with in silico 

equivalents, due to cost and time savings. 

 

Economic models of capital efficiency enabled by GATC’s technology 

GATC Health Corp is uniquely positioned to lead the phase-out of animal testing by leveraging its 

cutting-edge AI platform to develop robust, human-centric biological models. These accurately 

simulate disease progression, predict therapeutic responses, and assess safety and efficacy—

functions traditionally performed by animal models. By aligning with the growing global 

regulatory momentum, including initiatives like the FDA Modernization Act, which supports the 

use of non-animal testing methods, GATC Health can accelerate the adoption of AI-driven tools 

as validated alternatives. This shift not only enhances the scientific relevance and ethical integrity 

of preclinical research but also delivers significant cost savings. Such savings can then be 

strategically reinvested into innovation, accelerating the transition from discovery to clinical 

readiness and commercialization. Through this model, GATC Health champions a future of faster, 

more ethical, and more precise drug development, setting a new standard in biomedical research 

that both meets regulatory demands and eliminates the reliance on outdated animal-based testing 

paradigms. 
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Future Outlook 

Advancements in AI in silico testing offer a transformative approach to streamline drug 

development, reduce costs, and enhance ethical standards by minimizing animal testing. This study 

evaluates the potential impact of replacing traditional animal testing with AI in silico equivalents, 

focusing on time savings, cost efficiencies, animal welfare, and years of life lost (YLL) reductions. 

Using a retrospective analysis, we applied time savings to the ~300 drugs launched between 2000–

2013, as studied by Lichtenberg38, who reported 148.7 million life-years saved in 2013 across 27 

countries due to post-1981 drugs. 

Assuming traditional animal testing averages 72 days per test (weighted average time across 

animal test types), we modeled a 10% reduction in duration using AI in silico methods (64.8 days), 

yielding 7.2 days saved per test. For a drug program with 5 tests, this translates to 36 days saved 

(0.75% of the 13.1-year discovery-to-launch timeline). A more ambitious 50% reduction scenario 

reduces testing to 36.0 days, saving 180 days per program (3.76% of the average timeline from 

discovery to launch). Cost savings mirror this trend: a 10% reduction saves $92,112 per program, 

while 50% saves $460,558, based on a $184,240 (weighted average) traditional testing cost. 

Additionally, patents awarded for new biopharmaceutical inventions are granted protection for a 

finite term, and thus, every day of development delay prolongs the launch of a given medicine. As 

such, patients with unmet medical needs must wait longer for life-improving or even life-saving 

therapeutics, and the firms marketing the therapeutics miss out on additional days of patent-

protected sales. It has been estimated that, on average, every day of development delay is worth a 

loss of $500,000 in future sales45. Because of the reduction in development time due to in silico 

equivalent replacements, patients could receive life-savings treatments sooner, and industry could 

benefit from materially higher future sales. See figure 2 for estimated cost savings and recognition 

of additional sales to the US biopharmaceutical industry, per year, in replacing traditional animal 

tests with in silico equivalents. 

To estimate Years of Life Lost (YLL) savings, we calculated additional drug launches enabled by 

faster development. This was calculated assuming that all post-1981 drugs had used in silico 

equivalents rather than traditional animal tests. At a 10% reduction of the cost and time spent on 

traditional animal testing, 1.12 million additional life-years could have been saved in 2013. A 50% 

reduction in time and costs yields a potential saving of 5.6 million additional life-years. Total YLL 

saved in 2013 could have increased from 148.7 million to 149.82 million (10%) or 154.30 million 

(50%). Globally, replacing animal testing with in silico equivalents could spare 38.4 million 

animals annually, derived from Cruelty Free International's estimate of global animal use for 

chemical testing (192,000,000 animals used for testing per year, with pharmaceutical industry 

accounting for about 20%)46,47. See Figure 3 for estimated savings of both animals that are subject 

to biopharmaceutical testing and additional Years of Life Lost (YLL) before age 85, that could 

come with replacing animal tests with in silico equivalents. These findings underscore AI in silico 

testing’s potential to accelerate drug development, reduce costs, and enhance human and animal 

welfare, offering a compelling case for broader adoption in pharmaceutical research. 
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Conclusion 

GATC Health Corp is a key innovator in transforming drug development economics and ethics. 

The integration of AI-driven in silico testing marks a pivotal shift in the drug development 

paradigm, streamlining timelines, cutting costs, and aligning scientific progress with evolving 

ethical standards. The modeled impact of replacing traditional animal testing with AI-based 

equivalents shows significant potential: reducing development timelines by up to 180 days, saving 

hundreds of thousands of dollars per drug program, and sparing tens of millions of animals 

annually. Most importantly, this acceleration translates into meaningful public health gains. Faster 

market entry for life-saving therapeutics could have saved millions of dollars in additional life-

years bolstering robust support for the expanded use of AI, such as GATC Health’s MAT platform 

in drug development. 

GATC Health Corp is uniquely positioned to lead this transformation. By combining predictive 

toxicology, physiologically based pharmacokinetic (PBPK) modeling, and in silico clinical 

simulations, GATC Health delivers a fully integrated AI platform that optimizes every stage of the 

development pipeline. Its human-centric approach not only enhances translational relevance but 

also supports regulatory alignment and de-risks investment in innovative therapies. Looking ahead, 

GATC Health envisions a future where AI-powered NAMs become the default standard, delivering 

safer, faster, and more equitable access to therapies while dramatically reducing reliance on animal 

models. Through strategic collaborations, validation frameworks, and continuous technological 

innovation, GATC Health is advancing a new era of ethical, efficient, and patient-focused drug 

discovery. 
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